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The effect of vertical throughflow on the onset of convection in a fluid layer, between 
permeable horizontal boundaries, when heated uniformly from below, is re-examined 
analytically. It is shown that when the P6clet number Q is large in magnitude, the 
critical Rayleigh number R, is proportional to Qn, where n = 0, 1, 2, 3 or 4, with a 
coefficient depending on the Prandtl number P, according to the types of boundaries. 
When the upper and lower boundaries are of different types, the effect of a small 
amount of throughflow in one direction is to decrease R , .  This is so when the 
throughflow is away from the more restrictive boundary. Contributions arise from 
the curvature of the basic temperature profile, and from the vertical transport of 
perturbation velocity and perturbation temperature. The decrease in R, is small if 
P - 1 but can be of significant size if P 4 1 or P % 1. 

1. Introduction 
The determination of the criterion for the onset of convection in a horizontal fluid 

layer heated uniformly from below is a classical problem associated with Lord 
Rayleigh and H. BBnard. The steady-state conduction solution becomes unstable, 
and convection begins, when the Rayleigh number R exceeds a certain critical value 
R c .  In the standard problem there is no flow of fluid across the horizontal boundaries. 
A modified problem, where the boundaries are permeable, and there is vertical 
throughflow produced by injection at one boundary and removal of fluid at  the other 
boundary, was studied by Shvartsblat (1968, 1969, 1971) and his results were 
summarized by Gershuni & Zhukhovitskii (1976). As Shvartsblat pointed out, the 
problem is of interest because of the possibility of controlling the convective 
instability by adjustment of the transverse throughflow. 

The throughflow is measured by a P6clet number Q. Shvartsblat found, for the case 
of conducting rigid permeable boundaries, that R, was independent of the sign of Q, 
and increased markedly with Q increasing, i.e. the effect of throughflow is stabilizing 
and is independent of the direction of flow. Gershuni & Zhukhovitskii (1976, p. 236) 
wrote that the stabilizing effect may be explained as follows. With increasing 
injection velocity a temperature boundary layer forms at one of the boundaries. This 
decreases the effective thickness of the stratified layer of fluid which (at sufficiently 
large Q) is of order d,,, - d / Q ,  where d is the layer depth. On the other hand, the 
characteristic temperature difference across the layer remains fixed. The critical 
Rayleigh number, defined in terms of d, is thus of the order R, - (d/d,ff)3, so that it 
increases with the P6clet number according to R, - Q3. Gershuni & Zhukhovitskii 
stated that the numerical results corroborate this estimate. 
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It is shown below that this argument is deceptive because it assumes that the 
perturbation temperature and velocity functions will retain the same shape, and this 
is not so in general because the effective boundary conditions are changed. Thus the 
asymptotic behaviour of R, as Q becomes large depends on the nature of boundaries 
specified. The argument is also misleading in suggesting that the effect of throughflow 
is invariably stabilizing. When the upper and lower boundaries are of different types, 
a small amount of throughflow in one particular direction will be destabilizing. This 
is demonstrated and explained below. 

The effect of throughflow is in general quite complex. Not only is the basic 
temperature profile altered, but in the perturbation equations contributions arise 
from the convection of both temperature and velocity, and there is an interaction 
between all of these contributions. The meteorologists Krishnamurti (1975) and 
Somerville & Gal-Chen (1979) have discussed the effects of small amounts of 
throughflow but their main interest in it was as a measure of a vertical asymmetry 
with which is associated the stability of hexagonal cells. The corresponding problem 
for convection in a saturated porous medium has been analysed by Wooding (1960), 
Sutton (1970), Homsy & Sherwood (1976) and Jones & Persichetti (1986). In the last 
paper the authors found that their numerical results indicated that in one situation 
a small amount of throughflow was destabilizing, but they were unable to explain 
this phenomenon. The present author’s earlier note (Nield, 1987) was written to 
provide an explanation, for the porous-medium problem. The present paper reports 
an analysis for the viscous-fluid problem, in which the dependence on Prandtl 
number complicates the situation. 

In  general the determination of the critical Rayleigh number in a given situation 
entails solving the eigenvalue problem by numerical means, a process which is time 
consuming and which may produce less than full understanding. Fortunately there 
is one situation when the solution for arbitrary Q can be found in simple closed form. 
This is so when both boundaries are such that at them the heat flux is held constant, 
and so the perturbation heat flux is zero, i.e. the boundaries are ‘insulating’ with 
respect to temperature perturbations. This fact is exploited in the following analysis. 
For other types of boundary a perturbation approach is used to solve the problem 
for small values of Q. 

2. Analysis 
The relevant equations are those given by Gershuni & Zhukhovitskii (1976, p. 

235). It is known that instability appears in non-oscillatory form. The non- 
dimensional equations for the amplitudes of the perturbation vertical velocity W and 
the perturbation temperature 8 can be written as 

(1) 
Q (D2 - U ~ ) ~ W - - D ( D ~ - ~ ~ )  W = Ra28, P 

(D2-a2)@-Q&D8 = FW.  (2) 

Here D = d/dz, where z is the upwards vertical coordinate and a is the horizontal 
wavenumber of the disturbance. The Prandtl number P, the PBclet number Q and the 
Rayleigh number R are defined by 
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where v is the kinematic viscosity, K the thermal diffusivity, V ,  the imposed vertical 
throughflow velocity, d the layer depth, g the gravitational acceleration, a the 
volumetric expansion coefficient and A!P the imposed temperature difference. The 
non-dimensional gradient F of the steady-state basic temperature distribution is 
given by 

-Q eQz F = - .  
eQ-i (4) 

The differential equations (1) and (2) must be solved subject to appropriate boundary 
conditions. As usual, we suppose that the boundaries, at z = 0 (lower) and z = 1 
(upper), are either 'rigid' or 'free', and either 'conducting ' or 'insulating'. At a rigid 
boundary W = DW = 0, and at a free boundary W = D2W = 0. At a conducting 
boundary 8 = 0, and at an insulating boundary DQ = O .  For given boundary 
conditions, R is obtained as an eigenvalue. 

2.1. Solution for the case of insulating boundaries 
When both boundaries are insulating, it is easily checked that R attains its minimum 
value R ,  as a varies when a = 0. Accordingly, an expansion in powers of a2 is 
appropriate. Thus we let 

( W ,  8)  = (Wo, 8,) +a2(W,, el)+. . . 
and substitute in (1) and (2) and in the boundary conditions. 

The zero-order equations have solution 

W0=O,  Q o =  1. 

The fist-order equations are then 

D4 W, - ,uD3 W, = R ,  

D28, - QD8, = 1 +FW,, 

where, for convenience, we have defined 

Q 
t"=F 

The solvability requirement is that 

where 

(RWo) = 0, ((1 +FW,) So) = 0, 

J o  

The fist condition is satisfied trivially. The second requires that 

(1 +FW,) = 0. 

The general solution of (5) is 

R 2  
6P 

W .  = c o + c , z + c , z ~ + c ,  dZ--. 

For the case of two rigid boundaries, 

W, = DW, = 0 at z = 0, 1. 



For the case of two free boundaries, 

Hence 
W, = D2W, = 0 at z = 0 , l .  

{c,, C, , c2, c,} = @[ - p + p3 @I-'{ - 6,6  + 2p2 - (6 - p2) d, - 3p2, 6}. 

If the lower boundary is rigid and the upper one free then W, = DW, = 0 at z = 0, and 
W, = D2Wl = 0 at  z = 1. Hence 

{c,, c,, c2, c3} = iR[2p + 2p2 - (2p -p3)  &I-'{ - 4, - 4p, 6 + 6p - (6 -p2) d, 4). 

The expression for W, thus determined can now be substituted into (8) to yield a 
formula for R in terms of Q and p. Finally p can be replaced by Q/P. For the 
symmetrical cases, R is then an even function of Q, as one would expect. Thus one 
obtains the following results for the values of R, which in fact are those for R,. The 
suffix c is dropped in the rest of the paper. 

2.1.1. R ig idr ig id  

p2Q2 
Q+Y 

- [4pQ + 121 ch M Q  +PI)  - PpQ - 121 ch ( ! ( & - P I )  - 6[Q-p]  sh (i(Q - p) ) }  . (10) 

R = 129, sh ($2) b2 ch (b) - 2p sh ( $ ) I / {  [ - + 6Q + 6p] sh (g (Q  + p ) )  

Hence R-66&(Q+p) as Q++cQ. 

Also R - 7 2 0  1+---+- as Q+O. ( :; :: Lo) 
(The reader should recall that p is an abbreviation for Q/P.) The quadratic form in 
the last expression is positive definite, and attains a minimum when 3p = 20Q, that 
is P = &. 

Hence in this case throughflow is always stabilizing, and the direction of flow does 
not matter. 

2.1.2. Free-free 

p2Q2 R = 24Q3 sh ($2) p3 sh ($I/{ 12 [w - Q - p] sh (#Q + p ) )  

+[4p2Q2+ 12Q2+ 12p2]ch($(Q+p))+[2p2Q2-12Q2- 12p2] ch(g(Q-p))}. ( 1 1 )  

Hence R - 3 p Q  as Q + + o o .  

Also 

Again the quadratic form is positive definite. This time it has a minimum at P = i. 
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P 

0 
0.01 
0.1 
0.2 
0.5 
1 
1.25 

10 
100 

00 

R -  R,  

RO 
Q* 

-0 
-0.02 
-0.29 
- 0.54 
-0.81 
-0.28 

0 
1.10 
1.20 
1.21 

-0.102 
-0.101 
- 0.092 
- 0.079 
- 0.034 
- 0.002 

-0.027 
- 0.033 
- 0.034 

0 

TABLE 1. Values of P6clet number &* yielding the minimum critical Rayleigh number R as Q is 
varied, and of the corresponding proportional change in the critical Rayleigh number, for various 
values of the Prandtl number P, for the case of insulating boundaries, the lower being rigid and the 
upper free. R, (= 320)is the critical Rayleigh number for zero throughflow (& = 0). The values have 
been calculated from the approximate formula (13). 

2.1.3. Rigid-free 

6Q3(eQ - 1) [2p+ 2,2 - (2p -p3) e"] 
A eQ+p+BeQ+Cd+D ' 

R =  

where 

A = - -  4Q4 4Q3 + 6Qz - 12 + p2Q2 -4$Q + 6p2, 
Q+P 

B = -6Qz+ 12-2pQ2+ 12p, 

C = 12&+12-2~~Q-6p~,  
- 4Q4 

D=- +4Q3-12Q- 12-4~&'-12pQ- 1.2~. 
Q+P 

Hence R 6PQ as & + a ,  
R-3Q(Q+p) as &+-GO. 

(13) 
Q 5p 1040Q2-431~Q+536~2 

45 360 
R-320 1--+-+ { 18 72 

Also 

Again the quadratic expression is positive definite. The effect of a large throughflow 
is stabilizing, but the magnitude depends on whether Q is positive or negative. For 
small Q, upflow (Q positive) is stabilizing if P < and destabilizing if P > 4, and the 
reverse is true for downflow. Comparison with calculations using the exact solution 
(12) shows that the approximate solution (13) is useful for determining the minimum 
value of R as Q varies for a given value of P. The values given in table 1 have an error 
of less than 10%. The table shows that very little destabilization is possible if the 
value of P is approximately one, but a reduction in critical Rayleigh number of 3 % 
is possible if P is large, and a reduction of up to 10% is possible if P is small. These 
amounts arise from a difference in dynamic boundary condition. Further reduction 
is possible if the lower rigid boundary is conducting and the free upper boundary is 
insulating (see below). 
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Boundary 
conditions 

RC, FC 
RI, FI 
RC, RI 
RC, FI 
RI, FC 
FC, FI  

8 0  

exact 

1100.657 
320 

1295.781 
669.001 
816.748 
384.693 

Boundary 
conditions 

RC, FC 
RI, FI 
RC, RI 
RC, FI 
RI, FC 
FC, FI 

RO 
approx A, A m  A ,  
1138 -0.038Q 0.037,~ 0 
320 -0.055Q 0.070,~ 0 

1452 -0.050Q 0 -0.104Q 
692 -0.104Q 0 .046~ -0.1368 

413 -0.0689 0 -0.172Q 
953 +O.O12Q 0.044,~ +0.127& 

a0 

exact A; A I  
2.68 2.53,~ 0 
0 0 0 
2.55 0 -8.919 
2.09 0.82,~ -4.43Q 

1.76 0 - 2.059 
2.21 0.82,~ +4.43Q 

TABLE 2. Effect of small amounts of throughflow in cases of non-symmetric boundary conditions. 
RC, FI indicates that the lower boundary is rigid and conducting and the upper boundary is free 
and insulating. R, and a, are the critical Rayleigh number and the corresponding wavenumber 
when Q = 0. The ‘exact ’ values of these are well known, and are those given in Platten & Legros 
(1984, p. 349). A,, Am and A, are the proportional changes in R arising from the basic temperature 
profile, momentum transport and perturbation temperature transport respectively. Thus R = Ro 
(l+A,+d,+A,). Similarly A; and A; are the proportional changes in a due to momentum 
transport and temperature transport respectively. Thus a = a,( 1 + A ;  + A ; ) .  The A values and the 
approximate value of R, have been obtained from (14) using the exact values of a, for the 
wavenumber. 

2.2. Approximate solutions for other non-symmetric boundary conditions 
When the boundaries are not insulating an exact closed-form solution for arbitrary 
values of Q is not obtainable, but for small values of Q an approximate solution can 
be obtained by a perturbation approach. The eigenvalue R for small non-zero Q can 
be found using the eigenfunction for zero Q. This approach can be combined with 
Galerkin approximation. It is known that the one-term Galerkin expansion used 
below, with an appropriate polynomial as trial function, yields for zero Q a value of 
R which in the worst case is too high by 16% (Platten & Legros 1984, table V1.2). 
(As a referee pointed out, it is also possible to proceed by an expansion of the form 
R = R, +pRlo + QR,, + . . . , but the present approach provides sufficient accuracy 
and has the advantage that one can easily keep separate track of two effects 
involving Q.)  

When one puts W = AW,, 0 = Be, ,  (where W, and 8, are trial functions which 
satisfy the boundary conditions), substitutes into (1) and (2), multiplies (1) by W ,  
and (2) by Q,, then integrates each term from x = O  to 1, and performs some 
integration by parts, one obtains the following equation (when subscripts are 
dropped) : 

R =  
{(D2W)2 + ~ U ~ ( D W ) ~  +a4W2) +p(DW(D2 -a2) W)} {((D8)2 + a2tI2) - &(SD@)} 

a 2 ( W 8 )  ( - F W 8 )  
(14) 
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It is immediately clear that three contributions from throughflow may be 
distinguished. The term with coefficient ,u = Q/P arises from the vertical transport 
of momentum. The term with coefficient Q arises from the vertical transport of 
perturbation temperature. The term involving F arises from the curvature of the 
basic temperature gradient. In general, since the eigenfunction (W, 9)  depends on Q, 
there will be an interaction between the three contributions. However, when one 
takes a perturbation about the solution for zero Q, these contributions are 
isolated. 

The following trial functions are excellent approximations, satisfying the boundary 
conditions exactly, for Q = 0: 

for both boundaries rigid, W = z4 - 2z3 + z2, 
for both boundaries free, W = z4-2z3+2, 
for lower boundary rigid and upper boundary free, W = 
for both boundaries conducting, 9 = z2--z, 
for both boundaries insulating, 8 = 1, 
for lower boundary conducting and upper boundary insulating, 8 = zo - 22. 
If the boundaries are swapped, then 2 is replaced by 1-2. 
The results of calculations from (la), using the appropriate selection of trial 

functions, are summarized in table 2. 

3. Discussion 
When we compare our results with the picture presented by Gershuni & 

Zhukhovitskii (1976) we see that their picture should be amended in two important 
respects. 

First, their asymptotic relationship, R - Q3, as Q becomes large, does not always 
hold. The term ( -FW@),  which appears in the denominator of the expression for R 
in (14), can readily be expressed (using integration by parts) as an asymptotic power 
series in &-'. The coefficient of Q-" is proportional to the mth derivative of W 8  
calculated at  that boundary which is downstream to the throughflow. If that 
boundary is rigid and conducting then the coefficients of Qo, Q-' and Q-2 all vanish, 
and so ( - F W e )  - Q-3. This is an exceptional case, the one for which three boundary 
conditions happen to  make the first three coefficients zero. For a boundary that is not 
rigid, or one that is not perfectly conducting, ( - P W 8 )  - Q-2, Q-' or Qo according 
to whether the lowest-order non-zero boundary derivative of W 8  is the second, fist 
or zeroth. For symmetrical boundaries, the numerator in (14) is of order Q0. In other 
cases it is of order Qo or Q'. Hence R is of order Qn, where n may be 0,  1, 2, 3 or 4. 
For the case of two rigid boundaries, which is the case considered by the Russian 
authors, R - Q3, in accordance with their computations. For two rigid insulating 
boundaries, or two free conducting ones, R - Q2. For two free insulating boundaries, 
R - Q .  One extreme situation, where R - Q4, arises when the boundary downstream 
to the throughflow is rigid and conducting while the upstream boundary is rigid and 
insulating. The porous-medium problem, for the case of two porous insulating 
boundaries, provides an example where R - Qo. 

The second new feature is that when the boundaries are of different types, a small 
amount of throughflow can produce some destabilization. The results presented in 
table 2 show that this can be produced by three mechanisns. The curvature of the 
basic temperature profile produces destabilization when the throughflow is away 
from the more restrictive boundary. The effective temperature gradient is now 
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confined to a shallower layer of fluid, but the stabilizing effect of this change is more 
than offset by a relaxation of an effective boundary restriction. (An alternative 
explanation is that the distortion of the basic temperature profile leads to large 
values of W where 8 is large, and hence to an increased rate of transfer of energy into 
the disturbance.) 

The effects produced by the rigid-free (RF) and conducting-insulating (CI) 
contrasts are approximately additive ; they almost double up in the RC, FI case and 
almost cancel in the RI,  FC case. This effect from the basic temperature profile is 
accentuated by the contribution from the vertical transport of perturbation 
temperature. When the throughflow is from’ a conducting to an insulating boundary 
the effect of this transport is to oppose the stabilizing effect of thermal diffusion. 
Similarly the effect of throughflow from a rigid to a free boundary is to cause a 
transport of momentum which opposes the stabilizing effect of viscous diffusion. This 
last effect of throughflow is large when the Prandtl number is small. 

When the Prandtl number P has a value close to one the amount of destabilization 
cannot be large, but this is not the case when P is either large or small. We have seen 
that a reduction of the critical Rayleigh number by 10 YO can result from a rigid-free 
differential, and this should be increased when there is also a conducting-insulating 
differential effect operating. It appears that experimental data are not available. 
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